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Abstract—Steady-state dynamic fields of stress and deformation have been computed for rapid crack
propagation in the mid-plane of a thick strip of a viscoplastic work-hardening material. The faces of the
strip are subjected to prescribed anti-plane displacements. The system of governing equations has been
solved numerically by a finite difference method with an iterative procedure in the time domain which is
continued until a steady-state has been reached. The effects of viscoplastic material behavior have been
exhibited by comparisons with the results for the corresponding perfectly elastic problem. Dynamic effects

due to high crack-tip speeds have been investigated and dynamic results have been compared with results
obtained on the basis of a quasi-static problem formulation.

INTRODUCTION

The fields of stress and deformation near the tip of a stationary crack in elastic-plastic
rate-independent materials have been studied in some detail, see[l], for examples and
references. The problem of a growing crack in inelastic materials is more difficult, and only a
few continuum plasticity solutions are available, see[2] for a review. The main difficulty stems
from the history-dependent nature of the constitutive equations and the feature that the
material experiences a nonproportional straining history when it is loaded and unloaded as the
crack passes by.

Most of the existing treatments deal with quasi-static crack propagation in elastic-plastic
materials under a small scale yielding assumption in which the zone of plastic deformation is
assumed to be sufficiently localized near the crack tip that the singular part of the elastic
solution dominates the elastic field near the yield zone. For a recent work on quasi-static steady
crack growth under small scale yielding conditions see Dean and Hutchinson[3].

The literature on dynamic effects in the presence of elastic-plastic constitutive behaviour is
very limited. Investigations of the dynamic near-tip fields in an elastic perfectly plastic material
were presented by Slepyan[4] and Achenbach and Dunayevsky[5]. Dynamic near-tip effects for
the case of a strain-hardening material were investigated by Achenbach and Kanninen[6] and
Achenbach et al.[7], on the basis of J, flow theory and a bilinear effective stress-strain relation.
These authors found results which are very similar to the ones obtained by Amazigo and
Hutchinson[8] for the corresponding quasi-static problem.

In this paper we investigate both the effects of plastic deformation near a propagating crack
tip and dynamic effects due to high crack-tip speeds. The constitutive equations that are
employed define an elastic viscoplastic material. The constitutive model does not require the
statement of a separate yield criterion, nor is it necessary to consider loading and unloading
separately. Plastic deformations always exist, but they are negligibly small when the material
behavior should be essentially elastic.

The geometry that is considered is a two-dimensional one of a thick strip which contains a
rapidly propagating semi-infinite crack in its center-plane. The faces of the strip are subjected
to uniform anti-plane displacements, so that the crack propagates in Mode-III. A steady-state
situation relative to the moving crack tip has been assumed. The plastic deformations near the
crack tip, the residual plastic strains in the wake of the crack tip and other field variables are
obtained directly from the complete sclution without the assumption of small scale yielding.

The method of solution is numerical and involves an iterative procedure which is continued
until a steady state solution has been reached, in which the equation of motion, the flow rules
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and boundary conditions are satisfied simultaneously. The method is based on a finite difference
procedure which is unconditionally stable and has a second order accuracy.

In the special case of a perfectly elastic strip the problem possesses an analytical solution[9-
10] which has been employed to check the accuracy of the numerical method, and excellent
agreement has been obtained. For a comprehensive review on various dynamic crack problems
in perfectly elastic strips, see the review paper by Nilsson[11].

Typical effects due to viscoplastic consititutive behavior are studied by comparisons with
the corresponding elastic fields. The effects of high crack-tip speeds, which are directly related
to the strain-rate dependence of the material, are studied by comparisons of solutions for three
crack-tip velocities. The influence of the inertia term in the governing equations is studied by
comparisons with the corresponding quasi-static solutions. In particular, the dependence on the
crack-tip speed of the plastic zone in the vicinity of the crack tip, the level of plastic straining,
the amount of dissipative plastic work and the opening displacements are shown. A secondary
plastic loading zone within the wake region is observed for the dynamic problems at high
crack-tip speeds. This region appears to be absent in the quasi-static problems.

2. CONSTITUTIVE EQUATIONS

A convenient set of constitutive equations for an elastic-viscoplastic work-hardening
material has been proposed by Bodner and Partom[12]. These equations have the useful
property that no separate specification of a yield criterion is required, nor is it necessary to
consider loading and unloading separately. Within the context of these equations both elastic
and inelastic deformations are present at all stages of loading and unloading, but the plastic
deformations are very small when the material behavior should be essentially elastic.

In the usual manner the total rate of strain is expressed as the superposition of elastic
(reversible) and plastic (irreversible) components:

&= éﬁ," + éS}” Lj=123. (1
Here ¢; are the components of the infinitesimal strain tensor, €; = 1/2(u,; + u,;), where u, are

the components of the displacement vector, and dots represent time derivatives. The elastic

strain rates are related to the stress-rates, ¢,, by Hooke’s law
e 1 (. v o
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where u is the shear modulus, » is Poisson’s ratio and 8 ; is the Kronecker delta. It is assumed
that the plastic deformations are incompressible (€%’ = 0) and that the Prandtl-Reuss flow law
holds. Thus

éP=é’=As; A3)

where s; and ¢’ denote the deviators of the stress tensor and the plastic strain-rate tensor,
respectively,i.e. s; = o; — 1/3 04 8;and ¢ = €9’ — 1/3 €8 8. Equation (3) can be squared to yield
A in the form

A= D¢, 4
Here
D&"):%é%’)é#’), and J2=%5.‘,‘Su (3a,b)

are the second invariants of the plastic strain-rate deviator and the stress deviator, respectively.
Motivated by equations relating dislocation velocities and stresses, Bodner and Partom[12]
proposed the relation

DY’ = Diexp [~ (A} Jp)"), 6)
where
A= Z(n + 1)/n]V". (N

The coefficient n is related to the steepness of the DY’ —J, curve, D} is the limiting value of
D3P for very high stresses and Z is an internal state variable referred to as the hardness of the



Rapid mode-III crack propagation 881

material, which expresses its overall resistance to plastic flow. For isotropic work-hardening the
evolution equation for Z is taken to depend on the amount of plastic (irreversible) work, W,,
which has been done on the material from a reference state. Specifically, Z is assumed to have
the form

Z=Z|+(ZO-Z|)CXP[“M WPIZ()] (8)

where Z,, Z, and m are appropriate paramters of the material and the rate of plastic work can
be expressed in the form

W, =0,éP =s5,é0' =20 J,. 2

In eqn (8), Z, is the initial hardness and Z, is the upper limit of Z (saturation value). The
hardness must have an upper limit, because other wise DY’ would approach zero for large W,
which would imply fully elastic behavior at appreciable strains.

It can be shown that for the case of uniaxial stress under a prescribed strain rate, the axial
stress asymptotically approaches a maximum value as the total strain increases. The limiting
stress becomes larger as the applied strain rate increases.

The system of governing equations is completed with the stress-equations of motion

0iij = p i (10)

where p is the mass density.

3.ASTEADILY MOVING CRACKIN A STRIP
Let us consider the anti-plane deformations of a strip of height 2k whose constitutive
behavior is defined by eqns (1)~(9). The one non-vanishing displacement component is
uy(xy,x5,) and the corresponding total strains are

&=ty en=hu,. (11a,b)

The non-zero stress components follow from (1) and (2) as

oy =2ulen—€f); 03=2u(en— ). (12a,b)
The second invariant of the stress deviator follows from (5b) as
L=c}h+oh. (13)

For anti-plane strain the equation of motion reduces to

Uz, + 13 20) — 200 (€9 + €8) = pils. (14)

The plastic strains are governed by the flow rule (3).

As loading of the strip we assume a uniform displacement of the faces at x,= + h over a
distance * wy.

Let us first consider the quasi-static states of stress and deformation in a strip which does
not contain a crack. By virtue of anti-symmetry it suffices to consider the upper half of the
strip, with the following boundary conditions

us(x1,h,t) = woH(2) (15)
and

uy(x,,0,8) =0 (16)

where H(t) is the Heaviside step function. At time ¢ =0 the strip is free of deformation.

Since the field variables are obviously independent of x, the quasi-static equilibrium
equation can be solved to yield o3 = a35(f). The homogeneity of the strip implies that the
relevant total strain e3; is simply €3, = wo/2h. Hence eqn (12) yields

o(t) = ulwo/h —2¢8(1)]. an

The plastic strain and the plastic work, which are governecd by (3) and (9), respectively, take
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the form

€% = A(t) o(t) (18)
W, (1) = 2A(8) o3, (19)

The system of nonlinear equations (17)~(19) can be easily integrated numerically, to yield the
asymptotic values for oy, €% and W, which are reached at long times.

Next we consider the case that the center-plane of the strip contains a semi-infinite crack
which propagates in the x,-direction with a constant velocity v. The geometry is shown in Fig.
1. The (x;,x2,X3) coordinate is now assumed to move with the crack tip. A stationary coordinate
system (x,y,z) and the moving coordinates (x,,x,,x;) are related by

N=EX—0LX3= Y, 3= 2 (20)

It is further assumed. that the crack has been moving for a long time and that a steady-state has
been established relative to the moving coordinate system. The time derivatives in the equation
of motion then reduce to

(')=—v~§l,<">=v2§;§-. 1)
Consequently the equation of motion reduces to
(1= o) uz gy + 0= 2efh + €85) =0 (22)
where ¢2 = u/p. In the moving coordinate system the flow equations become
ve +A oy =0 23)
veR +Aoyn=0 (24

and expression (9) for the rate of plastic work reduces to
U(Wp)_| +2A]2=0. (25)

Equations (22)-(25) form a system of nonlinear differential equations for the field variables
uy(xy, x2), €8 (x,%), €8 (x1,x3), W,(x),X,). By rewriting these equations as a system of five first
order differential equations in €3, €, €%}, €%, W, and by using the compatibility condition for
the total strains, it can be shown that the system is of elliptic type as long as v/c <1, i.e. for
subsonic crack growth.

The boundary condition on the surface of the crack is

0'32=0f0r—00<x150 (26)
while the condition of displacement antisymmetry yields
u;(xl,O) =0 for x> 0. (27)

At some distance ahead of the crack tip the fields are equal to the long-time solutions for the
uncracked strip, discussed earlier in this section.

For a perfectly elastic strip the problem possesses an analytical solution given by Field and
Baker[9] and by Sih and Chen{10].
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Fig. 1. Propagating crack in a strip.
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4 NUMERICAL TREATMENT

The system of eqns (22)-(25) has been solved numerically by a finite difference procedure
which employed a grid of mesh sizes Ax, and Ax, in the x, and x, directions, respectively. The
procedure can be divided into two steps. In the first step (22) is treated, while (23)-(25) are
integrated in the second step.

Instead of solving directly the finite difference approximations to the elliptic equations,
which would involve a large system of non-linear algebraic equations, we adopt a different
approach in which the following equation is considered in place of (22):

% = (1= 0Yc?) uy g+ s 2= 2 [€§), + €], (28)

a
Here a is an appropriate coefficient which has the dimension of (length?/time)~'. Equation (28)
is a parabolic equation governing u; = us(x,,x,,t). The steady-state solution to this equation and
eqns (23)-(25), which satisfies the boundary conditions (26)-(27) and conditions at large |x,|,
forms the desired solution to the steady-state fields generated by a propagating crack in the
strip.

Equation (28) is solved by the generalized Du Fort-Frankel method for parabolic in-
itial-boundary value problems, proposed recently by Gottlieb and Gustafsson[13] and applied
by these authors to hydrodynamic equations. The steady-state solution is obtained after long
enough time. If At defines a time increment, this scheme yields an explicit three-level procedure
according to which it is possible to compute u; at internal points of the strip at time f+ At
whenever its values at the two previous time levels as well as the plastic strains at time ¢ are
known throughout the strip. The advantage of this method is that is does not involve the
solution of large systems of non-linear algebraic equations and since it is explicit and
unconditionally stable it produces the solution rather easily and efficiently. The steady state
solution is achieved very rapidly, the condition being that the solution does not change further
with time with a preassigned degree of accuracy.

A scheme of second-order accuracy has been adopted by which the error resulting from the
replacement of the differential equation (28) by its difference approximation is of second order
in the increments. With Ax, = Ax,, which is the usual case in practical computations, the explicit
form of the difference approximation to (28) can be written in the form:

e U3 (x1,X2,t + At) = e3us(xy, X2, — A1) + 2y — D)ey us(x1,x2,)
+ (1= 02/ c?) [us(x; + Axy,x2,8) + us(x) = Ax1,x,1)] (29)
+ u;(x,,x; + AXz,t) + u;(x,,xz - AX), t) - Ax.[efﬁ’(x, + AXl,Xz,‘)
— €8 (x, = Ax;,Xp,t) + €8 (X1,X3 + Axa,t) — €8 (x1,X; — Axy, )]

where

e, =2-vYc?
e=ie+ye
e=1e - ye

€ = a(Ax,)Y/At

and vy is a parameter to be chosen such that the scheme is unconditionally stable.

The stability of the scheme (29) can be investigated by following the analysis presented
in[13]. It is found that for unconditional stability y must be greater than 1.

In the second part, at every time step at which u;(x,,x,,t) has been computed according to
(29), € (x1,x2,1),6%(x;,x5,t) and W, (x,,x,,t) are computed from (23)-(25) by using the im-
proved Euler-Cauchy method and employing the boundary conditions (26) and (27), together
with the limiting values of €%’ and W, at x, > 0 far away from the tip, which are given by the
solution of (18)-(19).

According to this method (23)-(25) are integrated to yield the predicted values

€0 (1)~ Axy,xp,t) = €90(x1,x2,8) + Ax A(X),X3,8) 03y(X1,22,1)
E%’(xl = Axy,x3,0) =B (x1,%0,1) + Axy A (X1, X2,t) T3p(X1X2,8) (30)
W, (x) = Axy,xp,t)= W, (x1,22,8) + 282, A(x 1, x3,1) Jo(x),%3,8).
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These values are corrected according to
€R(x; — Axy,Xp,t) = €R(x1,x,8) + 5 Ax [A(x,X0,1) 031 (X1, 2000
*

+A(x, = Axy,xa,t) ;JI(Xl = Axy,x,0)]
e (x, — Axy,xp,t) = e?ii(x,,xz,t) +1Ax[AGx,X0,8) 032(x1,X2.8) (31

+A(x; - Axpx.1) ;32(«‘1 = Axy,xp,1)]
Wp(xl - AX|,X2,t) = Wp(xlvxbt) + Axl[A(xlvxbt) JZ(xl)xbt)

*
+A(x, — Axy,xy,t) ;z(xl = 8xp,xt)].

where the asterisk on A and J, means that these quantities are evaluated by using the predicted
values given by (30).

This process is applied at each time step for 0<x, < h until the steady state solution has
been reached. It turns out that for x,/h =2, the effect of the crack becomes negligible and the
values of e$’ and W, at that position can be taken as the long-time solution of (18)~(19) with u;
given by woxo/h and €% =0. Similarly, at the points x,=-2h, behind the crack tip, the
x;-dependence can be neglected and the value of the field variables can be taken equal to those
computed at x; = —2h + Ax,.

We conclude this section with the observation that no special treatment was given to the
computation of the field variables at the tip of the crack or in it’s vicinity. The numerical
scheme described above has been applied at all points of the strip.

S.RESULTS

The method of solution has been applied to compute the fields generated by crack
propagation in a strip made of titanium, for which the material parameters are, see[12}:
u=044-10°N/mm?, p=4.8710°Kg/m®, Z,=1150 N/mm?, Z, = 1400 N/mm?, D, = 10%sec”!,
m =100 and n = 1. The height of the strip is chosen as h = ¢/(5D;), which means that an elastic
shear wave whose speed is ¢ = (u/p)" will propagate a distance of 5k during the time interval Dj'.

All the results presented in this paper are obtained with the spatial increments Ax,/h =
Axy/h =0.05. With the time increment ¢ At/h = 0.01, and the constant a in eqn (28) chosen such
that ahAx,/At = 1, the steady-state solution is achieved, after 200 time steps. For the stability
parameter y in (29) we have chosen y = 1.1. With these choices, the numerical scheme was
found to be unconditionally stable and to provide solutions with a satisfactory accuracy. This is
demonstrated in the sequel for the perfectly elastic strip, for which an analytical solution is
known[9)]. Finally, the applied displacement w, on the surface of the strip has been chosen as
wol b = 0.008.

5.1 Crack propagation in a perfectly elastic strip

We present results for the case of steady propagation of a crack in a perfectly elastic strip to
demonstrate the accuracy of the proposed method of solution by comparing the results with the
closed form solution given in[9]. The excellent agreement suggests the potential usefulness of
the method for the analysis of other elastic crack propagation problems.

Figure 2 shows comparisons between the numerical and analytical solutions for the shear
stress o3, and the displacement u;, both versus x,, in the plane of the crack x,=0, for v/c =0
and v/c =0.8. The excellent agreement between the numerical and analytical solutions is
evident. At the crack tip (x; = x, = 0) the analytical solution predicts, of course, an unbounded
value for o3,. It has been shown in Ref.[14] that the value of the shear stress obtained from the
numerical solution at the closest grid point to the tip, i.e. at (Ax,,0), can be employed to
determine thg stress intensity factor from the numerical results. Alternatively the method of
calibrated crack-opening diaplacements[15] can be used for the determination of the stress
intensity factor by employing the crack opening displacement at the point on the crack face
which is nearest to the crack tip. Both approaches can be used here to determine K, for the
present strip problem for different values of the crack-tip speed. A closed-form expression for
K, is given in[10] as

Ky = uwy [2(1 - v cH"2 ]2, (32)
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Fig. 2. Comparison of numerical (—) and analytical (---) solutions of &3, and u; in the plane of the crack in
a perfectly elastic strip for o/c =0 and v/c =038

5.2 Crack propagation in a viscoplastic strip

At some distance ahead of the crack tip in the loaded viscoplastic strip the inelastic field
variables are given by (17) and the long time solution to (18)-(19). For our specific value of
wo =0.008/ we obtain ay/p = 0.005, €5, = 0.004, %’ = 0.0016, and W,/u =0.2x 107, It may be
noted that for a perfectly elastic strip we would obtain o5,/ = 0.008.

Since the present unified theory contains no yield criterion and plastic strains are present at
all stages of deformation, we consider an effective plastic strain whose rate is defined by

=126 e (33)
which reduces in the present problem to
9 - __ in
o, & = —2A(J»/3)"*/v. (34)

The state of deformation at a point can be specified by an offset rule according to which
inelastic strains occur whenever &, exceeds a certain value.

The numerical results have been used to study the effects of viscoplastic material behavior,
crack tip speed and the effects of material inertia.

(a) Effect of viscoplastic material behavior. This effect can be exhibited by comparing the
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dynamic fields obtained for the elastic-viscoplastic strip and the perfectly elastic strip. In Fig. 3
we show the total strains €;; in the plane of the crack, the shear stresses oy, ahead of the crack
tip and displacement on the crack-faces behind the crack tip, for v/c =0.1 and v/c =0.8. It is
clearly noted that the effect of viscoplasticity is extremely pronounced especially at the lower
velocity. The elastic crack-opening profile is steep, reflecting the square-root
dependence on the distance from the tip. As was noted in Section 2 the stresses in the present
constitutive model are necessarily bounded, but the total strains can be unbounded. It appears
that the exact form of the strain singularity near the tip of the crack cannot be found by a
simple asymptotic analysis. In the viscoplastic case the crack opens up more gradually, which
suggests a weaker singularity in the total strain €;, defined by (11). As the velocity increases o,
oy and e, exhibit stronger intensities. This is also noticed in the graphs of €y, if the magnitude
of the jump from the value of residual plastic strain behing the crack tip (where e3; = €%)) to the
total strain ahead of the crack tip is taken as a measure of the intensity of e, at the tip.

The weaker strain singularity which appears to occur in the inelastic problem (as compared
to the stronger square root singularity in a perfectly elastic material) may be a primary reason
for stable crack growth in a viscoplastic material. For quasi-static crack propagation under
small scale yielding in an elastic perfectly-plastic material the strain singularity is known to be
of a logarithimic type[16], and the crack-face displacement goes to zero like x log(—1/x) as
x—- =0,

The observed tendency of the stresses and the total strains toward a higher intensity
solution as the velocity of the crack tip in the rate-dependent material increases is consistent

with the observation that the elastic strain range and the plastic flow stress increase with
increasing strain rate.

(b) Effect of crack-tip speed. This effect, which is shown by comparing the various field
variables for different crack-tip speeds in the viscoplastic material is directly related to the
strain-rate dependence of the material. Figure 4 shows the total strains ey, the displacements u;,
the effective strains €,, and the plastic work W, at x, =0, for crack-tip velocities v/c =0.1, 0.5
0.8. It is clearly seen that both the effective plastic strain and the plastic work behind the
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Fig. 3. Comparison of &s;, €5, and u in the plane of a propagating crack in an elastic-viscoplastic strip (—)
and a perfectly elastic strip (---), for v/c = 0.1 and v/c = 08.
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Fig. 4. Comparisons of W, ey, &, and u, for a crack propagaling in an elastic-viscoplastic strip, at different
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crack tip increase with the velocity. Thus, the material in the wake experiences more severe
plastic flow in the case of a rapidly moving crack. This effect is also exhibited in the plot of the
plastic work behind the crack tip in the plane x, = 0. The increase of the effective plastic strains (or
equivalently 2¢%'/3'?) in the active plastic region just ahead of the crack with increasing v can also
be noted. In an elastic perfectly-plastic material with quasi-static crack growth the plastic
strain contains a singularity of logarithmic type. It is interesting to note that for the
lower and intermediate velocities »/c =0.1 and 0.5, respectively, the wake is composed of
residual plastic strains which remain constant after an unloading process has taken place. At
higher velocity v/c =0.8 on the other hand, there is a reversed loading effect back into the
plastic region, which can be seen in the plots of &, and the irreversible plastic work W,. The
occurrence of this secondary loading zone along the crack faces is caused by the high values of
J, (or equivalently the effective stress & = (3J5)'?), which are obtained when v/c = 0.8 and
which cause an appreciable amount of plastic strain in addition to the already existing residual
ones. This secondary zone was taken into account by Chitaley and McClintock([17], but it was
found to be negligible in[3].

The extent of the active plastic zone ahead of the crack tip as a function of crack-tip speed
can be obtained by a careful comparison of the plots of the effective plastic strain at different
values of the crack-tip speed. This comparison shows that the length of the plastic zone
decreases as the velocity of the crack tip increases. This appears to be consistent with the
expectation that for a higher velocity (which gives rise to a higher rate of loading) the amount
of plastic flow ahead of the crack tip should be less in this rate-dependent theory.

By arbitrarily adopting 0.2% as the value of effective plastic strain for a “plastic™ region, we
obtain the values shown in Table 1 for the dimensions of the region in which the material is in
the “plastic” state, for the various crack-tip speeds. The Table shows also that the extent of the
plastic zone in the x,-direction is less than its extent directly ahead of the crack.

It should be interesting to compare our results for the rate-dependent hardening material
§S Vol. 17, No. 9—D
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Table 1. The extent of the plastic regions in the strip for different crack-tip speeds. The last column
corresponds to the quasi-static formulation in which the inertia term is omitted.

Xolh vlc=0.1 vlc =05 vlc=08 vlc =08
quasi-static

0 xlh<040 x/h<025 x/h=0.10 xlh =025

0.05 0.40 0.25 0.10 0.20
0.10 0.35 0.20 0.10 0.20
0.15 0.35 0.20 0.10 0.15
0.20 0.30 0.15 0.10 -
0.25 0.25 - 0.0

0.30 -

0.0

with those obtained for an elastic perfectly-platic material with a steadily growing crack under
quasi-static small-scale yielding conditions. In the case of a stationary crack the elastic plastic
boundary is circular and extends along a distance r, = (K3/7)*/w ahead of the tip, see[l6],
where 7, is the yield stress in shear. For a growing crack the distance ahead of the tip is almost
the same as that without growth[17]. It deceases, however, for linear strain-hardening and
power-hardening materials[3].

Adopting an offset rule by which the yield stressd is determined at a permanent strain of
0.2%, we obtain for our material that the yield stress in shear is given approximately by
7ol 0 = 0.008. From (32) we have

(Kl 7o) = 2h(1 = v*c*)'" [(wol )/ (rol )T 39)

From (35) we obtain that the extent of the plastic region ahead of a quasi-static steadily growing
crack in an elastic-plastic material is given by

rlh = Qlm) (1= v¥ A [(wol ) (7ol )] (36)

which gives in the present situation the values r,/h =0.63, 0.55 asnd 0.38 for crack-tip speeds
vfc =0.1, 0.5 and 0.8, respectively. These values are seen to be higher than those appearing in
Table 1 (at x, = 0) for our work-hardening material. They do, however, show the observed decrease
of r, with v. This decrease of the length of the active plastic zone ahead of the
crack-tip due to work hardening is plausible. It was also obtained by Dean and Hutchinson|3)
for quasi-static crack growth under small scale yielding conditions. As to the extent of the
plastic region in the x, direction, the results of Chitaley and McClintock[17] give approximately
the value of r,/3 which is lower than the value of r,/2 given by our results stated in the Table.

Fracture criteria for a growing crack in ductile materials have been based on critical values
of one of the following near-tip fields: the plastic strain{17], the crack-opening displacement[2],
the crack-opening angle[18], and the total strain in the plane of the crack(3].

In a plastic strain fracture criterion it is assumed that crack growth can initiate and continue
if ahead of the crack-tip a critical amount of plastic strain accumulation is achieved:

eP=¢ atx;=x.

Our results show that this criterion can be easily applied (note that €%’ = V/(3) &/2 for x,>0in
the plane of the crack) and that it will exhibit a potentially increased instability of the crack at
higher propagation speeds, see Fig. 4.

The criterion of a critical crack-opening displacement at a given distance behind the tip
requires that

§= u3(xl, 0+)— u;(x|,0") = 6C at X = —Xe.

This criterion can also easily be applied to our results.

The crack opening angle is defined as the angle enclosed by the crack faces behing the
propagation crack tip. Since the free surface has a vertical tangent to the x;-axis at the crack
tip, the local crack opening angle is defined as the crack-opening displacement measured at a
small fixed distance behind the crack tip divided by that distance. This criterion can be
easily adopted and applied to our results.
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The results exhibited in Fig. 4 for the total strain can, however, not conveniently be used for
a fracture criterion.

(c) Dynamic effects.The effects that can be attributed to the inertia term in the equation of
motion (14) can be studied by comparing the solution for the dynamic formulation in the
rate-dependent material with the solution for the corresponding quasi-static formulation in
which the inertia term is omitted. Such a comparison is given in Fig. 5 for a high crack-tip
velocity, v/c =0.8. This figure shows the plastic work, the total strains, the effective plastic
strains and the displacements along the crack faces. It is clearly seen that a secondary plastic
zone behind the crack tip is obtained in the dynamic problem. This zone does not exist in the
quasi-static case, since the effective stress is not high enough to cause plastic flow. The
considerable amount of plastic deformation which is present in the dynamic problem can also
be seen in the plot of the plastic work, which shows a significant amount of dissipated energy.
Also shown in Fig. § is the decrease of the slope of u; on the crack-faces for the quasi-static
case indicating a weaker intensity and smaller crack opening angle. This shows that the
quasi-static formulation would suggest more stable steady crack-growth than the dynamic
formulation. The plot of & shows, however, a slight increase of the effective plastic strain at the
tip of the crack in the quasi-static problem which, if €, is adopted as a fracture criterion,
would lead to the conclusion that the growth is somewhat less stable than for the corresponding
dynamic formulation.

The extent of the “plastic” zone near the crack tip for the quasi-static problem is given in
Table 1. It is seen that whereas its length in the crack propagation direction is considerably
larger, its extent is smaller in the vertical direction.

For the intermediate crack-tip speed v/c = 0.5 the effect of the inertia term has decreased and it
has completely disappeared for v/c =0.1.
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Fig. 5. Comparisons of W,, ey, € and u, for the dynamical formulation (—) and the quasi-statical
formulation (---), for v/c = 0.8 an an elastic-viscoplastic strip.
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